Reciprocal selection in segregating generations to identify potential combiners of cotton (*Gossypium hirsutum* L.)

SOMASHEKHAR, AYYANAGOUDA M. PATIL, S.S. PATIL AND P.M. SALIMATH

Accepted : December, 2009

SUMMARY

Two F_1 hybrids (RAHH-102 and RAHH-136), which are distinct, were identified through their predicted double cross performance as potential sources of inbred lines for hybrid cotton cultivars. F_4 lines were derived from these crosses and utilized in a study on variability for combining ability. Sets of 26 lines each from the two crosses were crossed in a reciprocal fashion to the F_1 parent as a tester for combining ability. The improvements in performance of F_1 hybrids derived by crossing the best performing F_4 lines as predicted by their reciprocal test cross performance indicated that progress could be made for gain in combining ability through a breeding procedure similar to reciprocal recurrent selection in cross pollinated crops.

Key words : Combining ability, Segregating generation, Reciprocal selection

Notton improvement programmes that concentrate on the development of hybrids have contributed to improving cotton productivity (Dagaonkar and Malkandale, 1993). However, genetic gain in yield potential of hybrids appears to be approaching stagnation. In breeding programmes aimed at improving productivity of pure lines, *i.e.*, not hybrids, variability is created and exploited by practicing selecting for yield during segregating generations. However, improving the performance of hybrids requires that scientists consider the combining ability of potential parental material (Patil and Patil, 2003). In cross pollinated crops like maize, hybrid breeding programmes are supplemented by regular systematic programmes aimed at improving combining ability (Patil and Pandit, 1991). Systematic attempts have not been practiced in cotton to create variability for combining ability, i.e., combining ability was not considered as a trait for improvement in hybrid breeding programmes. Reciprocal recurrent selection schemes for improving combining ability have been an integral part of hybrid breeding programmes in cross pollinated crops and such programmes have contributed to success of hybrid maize. The procedures of improving combining ability in cross pollinated species can not be followed in cotton without suitable modification. Hence, there is a need for defining procedures of improving combining ability to serve as a

Correspondence to:

SOMASHEKHAR, Department of Genetics and Plant Breeding, University of Agricultural Science, DHARWAD (KARNATAKA) INDIA Authors' affiliations: AYYANAGOUDA M. PATIL, S.S. PATIL AND P.M. SALIMATH, Department of Genetics and Plant Breeding,

University of Agricultural Science, DHARWAD (KARNATAKA) INDIA pre-requisite in hybrid breeding in cotton. It is possible to recombine two, four or more lines (selected for combining ability) by single, double or multiple crossing or simulated intermating. Generally, individual plants in the F_4 generation are selfed and crossed with a tester line to initiate the selection of improved inbreds. The objective of this research was to determine the combining ability among segregant F_4 lines within two diverse populations.

MATERIALS AND METHODS

Following analysis (data not shown) of a large set of single crosses, two single cross hybrids RAHH 102 (RAH10 ' RA100) and RAHH 136 (RAH20 ' RAH200) were selected for this study based on their predicted double cross performance(Patil and Patil, 2003). Plants within each population were advanced to the F_{4} generation. Twenty-six, *i.e.* single plants, from each cross were selected randomly and crossed to the reciprocal F₁ hybrid as the tester parent. Thus, F_4 plants from RAHH 102 were crossed with RAHH 136 F_1 and random F_4 plants from RAHH 136 were crossed to RAHH 102 F, to established two sets of reciprocal hybrids. A field evaluation was conducted for two set of hybrids in Randomized Complete Block Design with three replications having two rows of 5 metre length. The whole experiment *i.e.* crossing and evaluation of the hybrids was conducted at University of Agricultural Sciences Dharwad during 2005-06 which receives an annual rainfall of 750 mm. Proper pest and disease control measure was taken to avoid economic loss. The characterization of the combining ability status of two sets of F_4 (26 each) lines was determined based on the performance of the crosses (seed cotton yield) compared with the F_1 reciprocal testers. Each F4 line was assigned to one of four classes